Math 245
Spring 2022
Lecture 11

Class QZ 4 Given $(x-3)^{2}+y^{2}=9$

1) Center $(3,0)$
2) Radius 3

3) Domain ε Range in interval notation.

Graph E' shade

$$
2 x-5 y>15
$$

write this in slope-Int. Form

Shade the Solution

$$
\left\{\begin{array}{l}
y<3 \\
x>-2 \\
x<4 \\
y \geq \frac{2}{3} x-2
\end{array}\right.
$$

Solve $\frac{x-5}{(x-2)(x+2)}>0$ R + signs
one side is zero, other side is a
Single fraction in factored form.
Set each factor $=0$, Solve

$x-5=0$	$x-2=0$	$x+2=0$
$x=5$	$x=2$	$x=-2$

x	$-\infty$	-2	2	5	∞
$x+2$	-	1	+	+	+
$x-2$	-	-	+	+	
$x-5$	-	-	-	+	
Problem	-	+	-	+	

IN. $(-2,2) \cup(5, \infty)$
Graph 4
S.B.N. $\{x \mid-2<x<2$ OR $\quad x>5\}$

Solve $\quad x^{2}-12>x$

1) Make RHS $=0$
2) Sector LHS completely
3) Set each factor $=0$, solve open Circles + signs

$$
\begin{aligned}
& x^{2}-x-12>0 \\
& (x-4)(x+3)>0
\end{aligned}
$$

$$
\begin{array}{ll}
x-4=0 & x+3=0 \\
x=4 & x=-3
\end{array}
$$

4) Make Sign Chart

x	$-\infty$	-3	4	∞
$x+3$	-	+	+	
$x-4$	-	-	+	
Problem	+	-	+	
I.N.	$(-\infty,-3)$	\cup	$(4, \infty)$	

Graph
S.B.N. $\{x \mid x<-3$ OR $x>4\}$

Review of factoring:

1) $2 x^{2}+5 x-7$

$$
=(x-1)(2 x+7)
$$

2)

$$
\begin{aligned}
& x^{2}(3 x-5)-25(3 x-5) \\
& =(3 x-5)\left(x^{2}-25\right)=(3 x-5)(x+5)(x-5)
\end{aligned}
$$

3) $x^{3}-1000=$
4) $8 x^{3}+1$

$$
\begin{array}{cc|}
x^{3}-10^{3}= & =(2 x)^{3}+1^{3} \\
(x-10)\left(x^{2}+10 x+100\right) & =(2 x+1)\left(4 x^{2}-2 x+1\right) \\
A^{3}-B^{3}=(A-B)\left(A^{2}+A B+B^{2}\right)\left(\begin{array}{l}
A^{3}+B^{3}= \\
(A+B)\left(A^{2}-A B+B^{2}\right)
\end{array}\right.
\end{array}
$$

